Ideas with IMPACT

2017-2018

idea packet

Sponsored by:

Come Fly With Me!
Come Fly With Me!
Exploring the Physics of Flight Using Drone Technology

Adam Mack, M.Ed.
W.R. Thomas Middle School (6901)
adammack@dadeschools.net
Career and Technical Education
TSA Advisor
SECME Coordinator

For information concerning Ideas with IMPACT opportunities including Adapter and Disseminator grants, please contact:

Edwina Lau, Ideas with IMPACT Program Director
The Education Fund
305-558-4544, Ext. 113
Email: elau@educationfund.org
www.educationfund.org
Table of Contents

1 | Florida Standards and Benchmarks
3 | Course Goals and Objectives
4 | Background Information & Resources Necessary for Implementation
5 | Vendors, Cost Breakdown, and Apps. Programming Information
6 | Unit Implementation Table
8 | Lesson Plan
Come Fly With Me!
Exploring the Physics of Flight Using Drone Technology

Florida Standards and Benchmarks:

Elementary

Big Idea 10: Forms of Energy
- SC.5.P.10.2 - Energy can cause motion or create change.

Big Idea 13: Forces and Changes in Motion
- SC.5.P.13.1 - Forces A
- SC.5.P.13.2 - Changes in Motion AA
- SC.5.P.13.3 - Forces that Move objects AA
- SC.5.P.13.4 - Balanced and Unbalanced

Middle School

Types of Forces (SC.6.P.13.1, SC.6.N.1.1, LAFS.68.RST.4.10, LAFS.68.WHST.1.2, MAFS.6.SP.2.5)
- Contact Forces
- Forces Acting at a Distance

- Gravitational Force
- Mass vs. Weight
- Newton’s Law of Universal Gravitation

Forces and Motion (SC.6.P.13.3, SC.6.N.1.3, MAFS.6.SP.2.5a, b, c and d)
- Forces
- The Effects of an Unbalanced Forces on an Object

Motion (SC.8.E.5.7; SC.8.E.5.4; SC.8.E.5.9; SC.8.P.8.4; SC.6.P.13.3)
- Develop the concept of motion
- Position
- Speed
- Velocity
- Acceleration
- Graphs of Motion

Forces (SC.8.E.5.4; SC.8.E.5.9; SC.7.N.1.5; SC.6.P.13.1)
- Develop the concept of Forces and equilibrium
- Newton’s First Law
• Newton’s Second Law
• Newton’s Third Law
• Law of Universal Gravitation

High School

Science Standard 12 Motion
• SC.912.P.12.2, 12.3, 12.4
Math Clusters
• MAFS.912.N-Q.1
Course Goals and Objectives:

At the beginning of this unit students will be introduced to physics of flight, Newton’s 3 laws of motion and the engineering design process. Students will then work with the teacher to design a flight challenge (Obstacle Course, Race Field) that they will build and use to further develop their knowledge of piloted (student flown) and autonomous (programmed) flight. Once the course is built, students will practice their piloted flight while collecting flight time data. Students will then program their drones to complete the course without the aid of a pilot and collect comparative flight time data. After analyzing data from the two forms of flight, students will discuss the pros and cons of each method and application in a real world setting using the C.E.R. (claim, evidence, reasoning) method in support of their individual positions.
Background Information & Resources Necessary for Implementation:

How do Airplanes fly?
https://www.youtube.com/watch?v=YyeX6ArxCYI
Introducing the concepts of flight video with brief historical background.

This Is How Drones Work
http://time.com/3769831/this-is-how-drones-work/
Time Magazine current event article to introduce drones.

Newton’s Laws-NASA
https://www.grc.nasa.gov/www/k-12/airplane/newton.html

Engineering Design Process
https://www.sciencebuddies.org/engineering-design-process/engineering-design-process-steps.shtml#theengineeringdesignprocess

Review of Graphing Skills
Available through Explore Learning Gizmo (District portal access)

CER Template
faculty.fiu.edu/~obrieng/May19Claimsevidencereasoningtemplatetelementary.docx
Vendors, Cost Breakdown, and Apps. Programming Information:

Parrot MiniDrones
https://www.parrot.com/us/minidrones#minidrones
Programmable Mini Drones.

Tynker App for Programming MiniDrones

Parrot AR Drone 2.0 (Advanced)

How to Program AR Drone 2.0
https://www.instructables.com/id/Autonomous-AR-Parrot-Drone-20-Flying/

Extended Learning Opportunities:

NSTA Article “From Droughts to Drones”

NSTA Reports April 2016 Pages 8-9
“Using Drones to Enhance STEM Learning”
http://static.nsta.org/pdfs/nstareports/nstareports201604.pdf

Obstacle Course Design Resources and Ideas

FAU UAV Championship 2017 – Game Manual
This manual is published by Florida Atlantic University and contains a description of a suggested flight course. The course is made with PVC materials and requires a PVC cutter and adhesive. On page 31 of the manual, it shows a photograph of a typical design and set-up. There are other examples and images easily found using an Internet search.

http://www.fauuav.org/

Materials: May be purchased through any Home Depot
Unit Implementation Timeline

Recommend 3 Weeks (regular schedule, not block)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Time Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to The Science of Flight</td>
<td>2-3 days</td>
</tr>
<tr>
<td>Engineering Design Process</td>
<td>1 day</td>
</tr>
<tr>
<td>Building of Obstacle Course</td>
<td>3-4 days (1 for Planning & Design / 2-3 for Building)</td>
</tr>
<tr>
<td>**Piloted Flight Exercise & Data Gathering</td>
<td>1 day</td>
</tr>
<tr>
<td>**Drone Programing</td>
<td>2-3 days</td>
</tr>
<tr>
<td>**Autonomous Flight Exercise</td>
<td>1 day</td>
</tr>
<tr>
<td>Data Analysis and Debriefing</td>
<td>1 day</td>
</tr>
</tbody>
</table>

These timeframes don’t take into consideration the time that the Teacher needs to become familiar with the programming software and drone operation. It is highly recommended, that enough time is allotted to become proficient in order for students to receive the maximum benefit from their experience.
Weekly Lesson Plan

Teacher: Adam Mack

Subject: Career and Technical Education

W. R. Thomas Middle School

<table>
<thead>
<tr>
<th>NGSSS</th>
<th>OBJECTIVES</th>
<th>ESSENTIAL QUESTION(S)</th>
<th>OUTLINE OF ACTIVITIES</th>
<th>INSTRUCTIONAL PROCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.6.P.13.2, SC.6.N.1.3, SC.6.N.1.5, SC.6.N.2.1, SC.6.N.3.2, SC.6.N.3.3,</td>
<td>Introduction to the Physics of Flight</td>
<td>How does anything stay up in the air? (Planes, helicopters, birds, insects, etc.)</td>
<td>Cooperative Activities Gizmo Interactive Activity (Tech) Lecture/Discussion Practice/Text/Worksheet Project/Presentation Reading/Writing Review Technology</td>
<td>Before showing the video, the Teacher will probe student understanding of the concept of flight and construct a KWL chart as a class. Students will be introduced to the Physics of flight by watching a short video documentary film. Resource Link: https://www.youtube.com/watch?v=YyeX6ArxCYI After which there will be a discussion and information will be added to the KWL chart. Teacher will present students with required vocabulary for the unit.</td>
</tr>
<tr>
<td>SC.8.E.5.7; SC.8.E.5.4; SC.8.E.5.9; SC.8.P.8.4; SC.6.P.13.3, SC.912.P.12.3</td>
<td>Interpret and apply Newton’s 3 Laws of Motion</td>
<td>How can you tell if the forces acting on an object are balanced or unbalanced?</td>
<td>Cooperative Activities Gizmo Interactive Activity (Tech) Lecture/Discussion Practice/Text/Worksheet Project/Presentation Reading/Writing Review Technology</td>
<td>The teacher will review Newton’s 3 Laws of Motion using a PowerPoint slide presentation and an Interactive from NASA Resource Link: https://www.grc.nasa.gov/www/k-12/airplane/newton.html Students will demonstrate understanding by scoring a minimum of 80% during a Kahoot It challenge. Resource Link: https://create.kahoot.it/quiz/f93e6099-a65a-4eba-afeed7f2b8686457</td>
</tr>
<tr>
<td>SC.8.E.5.4; SC.8.E.5.9; SC.7.N.1.5; SC.6.P.13.1</td>
<td>Newton/Law of Universal Gravitation (continued)</td>
<td>How does the saying “What goes up, must come down” apply to the force of Gravity applied to objects?</td>
<td>Cooperative Activities Gizmo Interactive Activity (Tech) Lecture/Discussion Practice/Text/Worksheet Project/Presentation Reading/Writing Review Technology</td>
<td>Continuation of yesterday’s lesson on Newton’s Laws of Motion. Students will be exploring the Law of Universal Gravitation by demonstrating that gravity is a force than can be overcome. (ex: ability to fly) Using laptops (or PCs), students will visit the PBS site and experiment with the interactive program to gain a more concrete understanding of the relationship between gravity and objects that are affected by its influence. Resource Link: https://www.pbslearningmedia.org/resource/ess05_sci_ess_eiu_moonorbit/why-doesnt-the-moon-fall-down/#.Wy-J64qQyXo</td>
</tr>
<tr>
<td>SC.68.CS-CS.2.2 SC.8.N.1.2</td>
<td>Introduction to the Engineering Design Process</td>
<td>What is Engineering and what does an engineer do? Is an engineer a type of scientist?</td>
<td>Cooperative Activities Gizmo Interactive Activity (Tech) Lecture/Discussion Practice/Text/Worksheet Project/Presentation Reading/Writing Review Technology</td>
<td>The teacher will introduce the engineering design process while students take notes from the presentation. Students will then construct a foldable to represent the engineering design process. Once completed, they will glue to their interactive notebook and keep for future reference. Resource Link: https://www.sciencebuddies.org/engineering-design-process/engineering-design-process-steps.shtml#theengineeringdesignprocess</td>
</tr>
<tr>
<td>MAFS.7.RP.1.2 MAFS.K12.MP.5.1 MAFS.K12.MP.1.1</td>
<td>Review of Graphing Skills and Data Analysis</td>
<td>How does graphing help engineers interpret test results? When do you use quantitative data vs. qualitative data?</td>
<td>Cooperative Activities Gizmo Interactive Activity (Tech) Lecture/Discussion Practice/Text/Worksheet Project/Presentation Reading/Writing Review Technology</td>
<td>Teacher will project the Explore Learning Gizmos Graphing Interactive on the Promethean board. Students will be given the accompanying handout to complete as the teacher selects students to come up to the board and solve for the exercises. Students should demonstrate proficiency of graphing to be ready for data collection phase of this unit. Resource Link: https://www.explorelearning.com/index.cfm?method=cRes resource dspDetail&ResourceID=625</td>
</tr>
<tr>
<td>Home Learning</td>
<td>Watch the video again and study the vocabulary words introduced during class.</td>
<td>Students should review notes taken during PowerPoint presentation if their Kahoot It score was below 80%</td>
<td>Review the Engineering Design process</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| ASSESSMENTS | Class Participation
Class Work
Discussion (contribution)
Group Project
Homework
Journaling
Observation
Oral Presentation
Portfolio
Projects
Review
Rubric
Teacher Observations
Test / Quiz
Other: | Class Participation
Class Work
Discussion (contribution)
Group Project
Homework
Journaling
Observation
Oral Presentation
Portfolio
Projects
Review
Rubric
Teacher Observations
Test / Quiz
Other: | Class Participation
Class Work
Discussion (contribution)
Group Project
Homework
Journaling
Observation
Oral Presentation
Portfolio
Projects
Review
Rubric
Teacher Observations
Test / Quiz
Other: |
<table>
<thead>
<tr>
<th>VOCABULARY</th>
<th>CRSS L.A. STRATEGIES</th>
<th>EQUIPMENT & TECHNOLOGY</th>
</tr>
</thead>
</table>
| Motion
Direction
Speed
Distance
Time
Forces
Contact force
Applied force
Friction
Gravity
Air resistance | Concept mapping
Drawing / Illustrations
Highlighting
K-W-L Charts
Power Notes
Q-A-R
Sticky Notes
Study Cards
Summarizing
Think-Pair-Share
Two Column Notes
Venn Diagrams | Equipment |
| Technology
CPALMS
Discovery Learning
Edgenuity
Gizmos
NBC Learn
PowerPoint / Prezi
Promethean Board
PBS Learning Media
Internet sites: | |
| D.I. / ESE / ESOL Strategies: |
| Alternative Assessment
Control Vocabulary
Cooperative Learning
Demonstrations | Directed Activity
Extended Time
Graphic Organizers
Guided Inquiry | Highlight
Individualized
Manipulative
Oral Repetition | Outlines/Checklists
Peer Tutor
Step-By-Step Instructions
Visual Aids | Other |
All Miami-Dade County public school teachers, media specialists, counselors or assistant principals may request funds to implement any project idea, teaching strategy or project from the 2017 Idea EXPO workshops and/or curriculum ideas profiled annually in the *Ideas with IMPACT* catalogs from 1990 to the current year, 2017-18. Most catalogs can be viewed on The Education Fund’s website at educationfund.org under the heading, “Publications.”

- Open to all K-12 M-DCPS teachers, counselors, media specialists
- Quick and easy reporting requirements
- Grants range from $150 - $400
- Grant recipients recognized at an Awards Reception

To apply, you must contact the teacher who developed the idea before submitting your application. Contact can be made by attending a workshop given by the disseminator, communicating via email or telephone, by visiting the disseminator in their classroom, or by having the disseminator visit your classroom.

Project funds are to be spent within the current school year or an extension may be requested. An expense report with receipts is required by Friday, June 1, 2018.

APPLICATION DEADLINE:
December 13, 2017
Apply online at educationfund.org

For more information, contact:
Edwina Lau, Program Director
305.558.4544, ext. 113
elau@educationfund.org
Contributors with IMPACT

Platinum Star

School District Education Foundation Matching Grant Program

Gold Star

Ford Motor Company Fund

Humana Foundation

MBF Miami Bayside Foundation

ASSURANT

P L Dodge Foundation

Learning A-Z

FPL

Silver Star

TriMix Foundation

Rod and Lucy Petrey

Perez Trading Company

Raj Rawal and Anne Marie Miller

Robert Russell Memorial Foundation

Bronze Star

The Jack Chester Foundation
Driving a **Brighter Future**

For more than 65 years, Ford Motor Company Fund has worked to improve people’s lives, investing $1.5 billion to support innovative programs in Community Life, Education, Safe Driving and the Ford Volunteer Corps.

For opening minds, creating opportunities, and helping to create a brighter future,

Ford Salutes The Education Fund.