STEAM & Beyond: Applied Scientific Expression Through the Arts

STEAM activities motivate students to present a culturally authentic performance

Student requests to participate will pour in for this in-depth STEAM project that demonstrates how science, technology, art, and culture work in tandem to improve interest and motivation to learn. Students delve into topics about sound creation, musical notes, how various musical instruments work, music from other cultures, the engineering methods used to create live music, the math involved in manipulating and assembling materials, and more. As a capstone activity, students use the musical instruments and costume elements they created to present a culturally authentic performance for their peers. Throughout the project, students begin to understand that math and a mastery of scientific principles are used in the engineering process to creatively apply technology to communicate and express themselves through art. The result of their efforts is tangible, useful musical instruments. Their music will serve as an enduring touchpoint that reinforces the value of having an educated mind.

“ This project addresses my students most commonly asked question, ‘Why?’”

WORKSHOP INSTRUCTION – WHAT TEACHERS LEARN
Integrate multiple disciplines into STEAM activities
Use Performing Arts to anchor a STEAM module
Ideas for incorporating music education into STEAM instruction

STANDARDS
SCIENCE
SC.3.P.10.2 Recognize that energy has the ability to cause motion and create change

MUSIC
MU.3.S.3.2 Play melodies and layered ostinato, using proper instruments, techniques on instruments

VISUAL ARTS
VA.3. F.1.1: Manipulate art media and incorporate a variety of subject matter to create imaginative artwork.

MATHEMATICS
MAFS.3.N.F.1.1 Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size1/b

SPONSORED BY
ASSURANT®
School District Education Foundation Matching Grant Program

CONTACT INFORMATION
DR. EKATERINA BELYAKOVA
SCHOOL: Fienberg Fisher K-8 Center
PRINCIPAL: Maria P. Costa
EMAIL: dr_k@dadeschools.net
PHONE: (318) 229-8678
DOWNLOAD PROJECT INFO AT EDUCATIONFUND.ORG

To register for this workshop, visit www.educationfund.org
STEAM & Beyond: Applied Scientific Expression Through the Arts
STEAM and Beyond:
Applied Scientific Expressions Through the Arts

Disseminator: Ekaterina Belyakova, PhD
Dr_k@dadeschools.net
Feinberg-Fisher K-8 Center
School Code: 0761

For information concerning ideas with IMPACT
Please contact:
Ideas with IMPACT Program Director
Audrey Onyeike

The Education Fund
305-558-4544 ext. 113
Email: audrey@educationfund.org
www.educationfund.org
Table of Contents

• Description of the Project

• Course Outline
 o Big Idea
 o Unit
 o Project
 o Grading Period
 o Florida Standards
 o Grade Level
 o Goals and Objectives
 o Learning Outcome
 o Classroom Settings
 o Brief Reminders/Reviews

• Prerequisites for the STEAM lesson
 o Appendix A
 ▪ World of Folk Music & Cultures
 ▪ Sound and Musical Instruments
 ▪ Sound and Pitch
 ▪ Science Guide Card
 ▪ Engineering Design Process
 ▪ Rubric

• 5.0 STEAM Lesson - Music
 o Appendix B
 ▪ Lesson Plan
 ▪ Science
 ▪ Technology
 ▪ Engineering
 ▪ Music
 ▪ Math

• After the STEAM lesson

• Resource List:
 o Materials
 o Students Work Samples
Description of The Project:

Visual and performing arts help us to be engaged in learning about the science and technology behind performing multi-cultural music with Musical instruments (drums). Students will go through an educational process (instruction, modeling, directing, researching, designing, creating, applying, refining, performing, and reflecting) as they learn about sound creation, musical tones, and how various musical instruments work. They will inquire the engineering method to invent, and use the math and science to manipulate and assemble materials. As a capstone activity, students will use the musical instruments they created to present a culturally-authentic stage performance.

Course Outline

Big Idea: Identity and World Cultures

Unit: World Cultures and Music

Project 3: Musical Instruments and Cultures

Grading Period: 3rd 9 weeks

Grade level: 3rd

Standards:

- MU.3.H.1 Through study in the arts, we learn about and honor others and the worlds in which they live (d).
 - MU.3.H.1.1 Compare indigenous instruments of specified cultures.
 - MU.3.H.1.3 Identify timbre(s) in music from a variety of cultures.

Goals and Objectives:

- Expose children to the arts of different cultures through creative expression by using the STEAM approach
 - The students will craft musical instruments for imaginative and creative self-expression
 - The students will experiment and will have a blast applying their creativity to modeling, designing, and exploring different cultures
 - The students will identify and compare instruments from different cultures
 - The students will learn about and honor the diversity of world cultures

Learning Outcome:

- The students gained an understanding of how artists employ expressive features of art, and relationships of art elements, to communicate and direct viewers toward understanding their artwork.
- The students explored the ways that art can reveal individual and cultural values and beliefs, as well as challenge those values and beliefs.
- The students summarized 3rd nine week knowledge through STEAM lesson
- The students created art work
Setting up the classroom for the STEAM lesson:

1. Introduction to the lesson – use whole class setting
 - Review previous knowledge
 - Set goals, objectives, and expectations
 - Check for the understanding
 - Clarify the desired end-state

2. STEAM lesson - divide the class into small groups
 - Provide: rubric, supplies, working materials, and worksheets

Briefly remind and review with the students:

- STEAM lesson requirements (rubric, ethic for team work)
- Prerequisite knowledge (music sheet, science guide)
- Engineering design process
- Engineering testing questions

Prerequisite for the STEAM Lesson

Introduce students to different components of the project (See appendix A)

5.0 STEAM Lesson – Music

Description:
In the music lesson we learned:

- Music Instruments produce sounds
- Sound is a result of vibrations
- The slower the vibration the lower the pitch, and vice versa

We can evaluate the sounds in a many ways:

- One of the ways to evaluate the sound is to observe the sound’s pitch
- The pitch can be high or low, depending on the speed of the vibrations
- Use a sound analyzer app to determine rather a vibration a slow or fast
 - Since we know that fast vibrations are related to high-pitched sounds, and slow vibrations are related to low pitch sounds, we can than determine which type of the pitch the drum has
- Build a drum with a high pitch.
Detailed 5.0 STEAM Lesson (See appendix B)

After the STEAM Lesson

After you build your instrument, create a musical piece in relation to the culture you chose:

- Find music from the culture of your choice
- Your musical piece should be at least 30 seconds, but no longer than one minute
- Choose to create a solo, duet, or ensemble piece (You can choose to work on your own, with your partner, or in a small group)

Resource List:

- **Drum Materials:**
 - Glues (various types)
 - Tape (various types)
 - Buckets, cans, and/or jars (various sizes)
 - Cardboard, poster board, and/or cardstock (for making drum heads)
 - Wood dowels and/or pvc pipe sections (for making mallets)

- **Students’ Work:**
Appendix A

World of Folk Music & Cultures

Research the culture of your choice to create your own musical instrument and performance.

- Culture/Country: _____________________________
- Facts:
 - Continent:
 - Music/Musical Instrument(s):
 - Cultural traits:
- Create a Poster

Sound and Musical Instruments

1. Watch the video, link: https://www.youtube.com/watch?v=yMLTF_0PAQw&vl=en
2. Experiment with different objects to explore sounds
3. What is “pitch?”
4. How can the pitch be changed?
5. Write the conclusion of your findings:
 - Rulers with different lengths: __
 - Bottles with different levels of water: _________________________________
 - Voice: ___
 - String instrument: ___
 - Xylophone: __
Sound and Pitch

Leaning About Pitch

<table>
<thead>
<tr>
<th>Type of pitch:</th>
<th>Not Definite</th>
<th>Absolute</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Percussion instruments like the drum or tambourine</td>
<td>• Tuned instruments like the piano or guitar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nature of pitch</th>
<th>Low Pitch</th>
<th>High Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Something that sounds deep or soft</td>
<td>• Something that sounds elevated or piercing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pitch In music</th>
<th>Low pitch</th>
<th>High pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Measured by ear</td>
<td>• Lower than middle C</td>
<td>• Higher than middle C</td>
</tr>
<tr>
<td>• Compare sounds to middle notes like C (260 Hz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Use a Tuning App</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In Physics/Science</th>
<th>Low pitch</th>
<th>High pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Measured by Hertz</td>
<td>• An audible note that is vibrating less than 260Hz Hz by sound waves vibrates at 260 times a second or less, the slower the vibration the lower the sound</td>
<td>• An audible note that is vibrating more than 260 Hz by sound waves vibrates at 260 times a second or more, the faster the vibration the higher the sound</td>
</tr>
<tr>
<td>• Middle C is 256 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Audible sounds range from 20 Hz to 20,000 Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Science Guide Card

<table>
<thead>
<tr>
<th>State of Matter</th>
<th>Solid</th>
<th>Liquid</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Has its own shape, has volume and mass</td>
<td>Takes a shape of its container, has volume and mass</td>
<td>No shape of its own, has no “fixed” volume, but has mass</td>
</tr>
<tr>
<td>Examples</td>
<td>Ice cube, book, ruler,</td>
<td>Water, oil, ink, soda</td>
<td>Helium in balloon, clouds, exhaled breath</td>
</tr>
</tbody>
</table>
Engineering Design Process

<table>
<thead>
<tr>
<th>ASK</th>
<th>What is the Problem? How have others approached it? What are your constraints?</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAGING</td>
<td>What are some solutions? Brainstorm Ides Choose the best one</td>
</tr>
<tr>
<td>PLAN</td>
<td>Draw a diagram Design your prototype Make a list: o Materials that you will need o Steps you will take</td>
</tr>
<tr>
<td>CREATE</td>
<td>Follow your plan Create Test it!</td>
</tr>
<tr>
<td>IMPROVE</td>
<td>What works? What doesn’t? What could work better?</td>
</tr>
</tbody>
</table>
STEAM Rubric

Name: ____________
Class: ______________

Self Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Unsatisfactory Effort (0 points)</th>
<th>Effort Needs Improvement (1 point)</th>
<th>Satisfactory Effort (2 points)</th>
<th>Outstanding Effort (3 points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I contributed to the team work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I exhibited scientific thinking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I maintained a positive attitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I completed the building task</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I reflected on my work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Team Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Unsatisfactory Effort (0 points)</th>
<th>Effort Needs Improvement (1 point)</th>
<th>Satisfactory Effort (2 points)</th>
<th>Outstanding Effort (3 points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>My team worked well together</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My team displayed problem-solving skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My team had a positive attitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My team completed the building task</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My team discussed and reflected on our work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Teacher Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Unsatisfactory Effort (0 points)</th>
<th>Effort Needs Improvement (1 point)</th>
<th>Satisfactory Effort (2 points)</th>
<th>Outstanding Effort (3 points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student cooperated with the team</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student exhibited scientific thinking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student maintained a positive attitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team completed the building task</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student reflected on the work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

5.0 STEAM Lesson – Music

Objectives and Activity Description:

Science:
- SC.3.P. 8.3: *Compare materials and objects according to properties such as size, shape, color, texture, and hardness*
- The students experiment with different objects to cause different motions to create changes in sounds, and compare materials.

Technology:
- No standards (*See SAMR model*)
- The students learn how to create a PowerPoint presentation as a group and share it with others

Engineering:
- No standards (*See Engineering Design Process*)
- The students build drums to create specified types of sounds (high pitch sound), then test them, and make improvements as needed.
- Problem: Build a drum that is at least 3 inches high, but no more then 30 inches tall. Design the drum that will produce a high pitch.
- While you build your drum go through drum pitch factors:
 - Size
 - Thickness and material type
 - Air to create a vibration (open or closed bottom)
 - Drum head tension
- Test your drum – use a sound analyzer app

Art:
- MU. 3 C.1 *Cognition and reflection are required to appreciate, interpret, and create with artistic intent*
 - MU. 3 C.1.2. *Respond to a musical work in a variety of ways and compare individual interpretations*
- The students use the instruments that they individually designed and created to make music that accompanies recorded folk songs. Students will take turns performing for their peers, and make comparisons

Math:
- MAFS.3.MD.2.4 *Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units— whole numbers, halves, or quarters.*
- The students use tools to measure their constructed musical instrument. (*For example, rulers will be used to measure dimensions*)
Science

Classifying the Material

Task: Put materials into the groups. Classify each of your instruments’ materials as a solid, liquid, or gas.

Directions: Place materials into categories using your test card as a guide. Categorize all of the materials that you will be using.

Material:

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questions:

1. What properties do the materials in the first group have in common?
2. From what group did you use the most materials? Why?

Technology

Follow the Steps:

1. Take a picture of your instrument
2. Upload the picture to the computer
3. Open MS PowerPoint presentation
4. Choose the slide pattern
5. Insert the picture
6. Add the title, team #, culture, instrument
7. Save your work

* See Example of Students Work (Power Point Presentation)
Engineering

Directions:

• Reflect on the Engineering Process:

 o I will build a: __________

 o Problem (see parameters): ____________________________

 o Plan (see drum pitch factors):
 ▪ 1.
 ▪ 2.
 ▪ 3.
 ▪ 4.

 o Prototype (sketch): ________________________________

 o Testing: Go to sound analyzer app
 ▪ Sound analyzer app result: _________
 ▪ Low Pitch_______ High Pitch_______

 o Can your instrument produce the needed sound?
 ▪ Yes ______ No _______

 o List any changes you made or need to make.
 ▪ __

 o Summarize
 ▪ __
Art/Music

Complete this form after you have done your project.

- Did you create a solo, duet, or ensemble? _____________________________
- What culture did you research? ______________________________________
- What type of instrument did you build? ________________________________
- Why does the size of a drum affect its pitch? ___________________________

Peer Evaluations

<table>
<thead>
<tr>
<th>Group</th>
<th>Culture Portrayed</th>
<th>Artistic Intent 1 to 10</th>
<th>Individual Interpretation 1 to 10</th>
<th>Positive comments What did you like about the performance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Math

Measure your instrument to the nearest quarter of an inch.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Inches</th>
<th>Parts of Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circumference</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>